6 research outputs found

    Deploying public surface transit to forward messages in DTN

    Get PDF
    Delay Tolerant Network (DTN) is a communication architecture enabling connectivity in a topology with unregular end-to-end network connection. DTN enables communication in environments with cross-connectivity, large delays and delivery time variations, and a high error rate. DTN can be used in vehicular networks where public transport get involved. This research aims to analyze the role of public transit as a DTN routing infrastructure. The impact of using public transit as a relay router is investigated by referencing the network performance, defined by its delivery ratio, average delay and overhead. The results show that public transit can be used as a backbone for DTN in an urban scenario using existing protocols. This opens insights for future researches on routing algorithm and protocol design

    An Overview of QoS Enhancements for Wireless Vehicular Networks

    Get PDF
    Vehicular ad hoc networks (VANETs) allow vehicles to form a self-organized network without the need for permanent infrastructure. Even though VANETs are mobile ad hoc networks (MANETs), because of the intrinsic characteristics of VANETs, several protocols designed for MANETs cannot be directly applied for VANETs. With high number of nodes and mobility, ensuring the Quality of Service (QoS) in VANET is a challenging task. QoS is essential to improve the communication efficiency in vehicular networks. Thus a study of QoS in VANET is useful as a fundamental for constructing an effective vehicular network. In this paper, we present a timeline of the development of the existing protocols for VANETs that try to support QoS. Moreover, we classify and characterize the existing QoS protocols for VANETs in a layered perspective. The review helps in understanding the strengths and weaknesses of the existing QoS protocols and also throws light on open issues that remain to be addressed. Keywords: QoS, VANET, Inter-Vehicle Communications, MAC, Routin

    An Intelligent Transportation System Application for Smartphones Based on Vehicle Position Advertising and Route Sharing in Vehicular Ad-Hoc Networks

    Full text link
    [EN] Alerting drivers about incoming emergency vehicles and their routes can greatly improve their travel times in congested cities, while reducing the risk of accidents due to distractions. This paper contributes to this goal by proposing Messiah, an Android application capable of informing regular vehicles about incoming emergency vehicles like ambulances, police cars and fire brigades. This is made possible by creating a network of vehicles capable of directly communicating between them. The user can, therefore, take driving decisions in a timely manner by considering incoming alerts. Using the support of our GRCBox hardware, the application can rely on vehicular ad-hoc network communications in the 5 GHz band, being V2V (vehicle-to-vehicle) communication provided through a combination of Android-based smartphone and our GRCBox device. The application was tested in three different scenarios with different levels of obstruction, showing that it is capable of providing alerts up to 300 meters, and notifying vehicles within less than one secondThis work was partially supported by the "Ministerio de Economia y Competividad, Programa Estatal de Investigacion, Desarollo e Innovacion Orientada a los Retos de la Sociedad, Proyectos I+D+I 2014", Spain, under Grant Nos. TEC2014-52690-R and BES-2015-075988.Hadiwardoyo, SA.; Patra, S.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J.; Manzoni, P. (2018). An Intelligent Transportation System Application for Smartphones Based on Vehicle Position Advertising and Route Sharing in Vehicular Ad-Hoc Networks. Journal of Computer Science and Technology. 33(2):249-262. https://doi.org/10.1007/s11390-018-1817-4S249262332Papadimitratos P, De La Fortelle A, Evenssen K, Brignolo R, Cosenza S. Vehicular communication systems: Enabling technologies, applications, and future outlook on intelligent transportation. IEEE Communications Magazine, 2009, 47(11): 84-95.Gerla M, Kleinrock L. Vehicular networks and the future of the mobile Internet. Computer Networks, 2011, 55(2): 457-469.Vegni A M, Loscrí V. A survey on vehicular social networks. IEEE Communications Surveys & Tutorials, 2015, 17(4): 2397-2419.Eze E C, Zhang S J, Liu E J. Vehicular ad hoc networks (VANETs): Current state, challenges, potentials and way forward. In Proc. the 20th Int. Conf. Automation and Computing, September 2014, pp.176-181.Qi L. Research on intelligent transportation system technologies and applications. In Proc. Workshop on Power Electronics and Intelligent Transportation System, August 2008, pp.529-531.Gozalvez J. First Google’s Android phone launched [Mobile Radio]. IEEE Vehicular Technology Magazine, 2008, 3(4): 3-69.Haklay M,Weber P. OpenStreetMap: User-generated street maps. IEEE Pervasive Computing, 2008, 7(4): 12-18.Hadiwardoyo S A, Patra S, Calafate C T, Cano J C, Manzoni P. An Android ITS driving safety application based on vehicle-to-vehicle (V2V) communications. In Proc. the 26th Int. Conf. Computer Communication and Networks, July 31-August 3, 2017.Eriksson J, Balakrishnan H, Madden S. Cabernet: Vehicular content delivery using WiFi. In Proc. the 14th ACM Int. Conf. Mobile Computing and Networking, September 2008, pp.199-210.Gerla M, Weng J T, Giordano E, Pau G. Vehicular testbeds-validating models and protocols before large scale deployment. In Proc. Int. Conf. Computing Networking and Communications, January 30-February 2, 2012, pp.665-669.Wahlström J, Skog I, Händel P. Smartphone-based vehicle telematics: A ten-year anniversary. IEEE Trans. Intelligent Transportation Systems, 2017, 18(10): 2802-2825.Whipple J, Arensman W, Boler M S. A public safety application of GPS-enabled smartphones and the Android operating system. In Proc. IEEE Int. Conf. Systems Man and Cybernetics, October 2009, pp.2059-2061.Meseguer J E, Calafate C T, Cano J C, Manzoni P. DrivingStyles: A smartphone application to assess driver behavior. In Proc. IEEE Symp. Computers and Communications, July 2013, pp.000535-000540.You C W, Lane N D, Chen F L, Wang R, Chen Z Y, Bao T J, Montes-De-Oca M, Cheng Y T, Lin M, Torresani L, Campbell A T. CarSafe app: Alerting drowsy and distracted drivers using dual cameras on smartphones. In Proc. the 11th Annual Int. Conf. Mobile Systems Applications and Services, June 2013, pp.461-462.Patra S, Arnanz J H, Calafate C T, Cano J C, Manzoni P. EYES: A novel overtaking assistance system for vehicular networks. In Proc. the 14th Int. Conf. Ad-Hoc Networks and Wireless, June 2015, pp.375-389.Togneri M C, Deriaz M. On-board navigation system for smartphones. In Proc. Int. Conf. Indoor Positioning and Indoor Navigation, October 2013.Dancu A, Franjcic Z, Fjeld M. Smart flashlight: Map navigation using a bike-mounted projector. In Proc. the SIGCHI Conf. Human Factors in Computing Systems, April 2014, pp.3627-3630.Yamabe T, Ikegami S, Ishizaki A, Kitagami S, Kiyohara R. Car navigation user interface based on a smartphone. In Proc. the 7th Int. Conf. Mobile Computing and Ubiquitous Networking, January 2014, pp.85-86.Matsuyama S, Yamabe T, Takahashi N, Kiyohara R. Intelligent user interface of smartphones for on-vehicle information devices. Procedia Computer Science, 2014, 35: 1635-1643.Kovacevic B, Kovacevic M, Maruna T, Papp I. A java application programming interface for in-vehicle infotainment devices. IEEE Trans. Consumer Electronics, 2017, 63(1): 68-76.Liu R L, Liu H Z, Kwak D, Xiang Y, Borcea C, Nath B, Iftode L. Themis: A participatory navigation system for balanced traffic routing. In Proc. IEEE Vehicular Networking Conf., December 2014, pp.159-166.Liu R L, Liu H Z, Kwak D, Xiang Y, Borcea C, Nath B, Iftode L. Balanced traffic routing: Design, implementation, and evaluation. Ad Hoc Networks, 2016, 37: 14-28.Vochin M, Zoican S, Borcoci E. Intelligent system for vehicle navigation assistance. In Proc. World Conf. Information Systems and Technologies, April 2017, pp.142-148.Sha W J, Kwak D, Nath B, Iftode L. Social vehicle navigation: Integrating shared driving experience into vehicle navigation. In Proc. the 14th Workshop on Mobile Computing Systems and Applications, February 2013, Article No. 16.Kwak D, Liu R L, Kim D, Nath B, Iftode L. Seeing is believing: Sharing real-time visual traffic information via vehicular clouds. IEEE Access, 2016, 4: 3617-3631.Djajadi A, Putra R J. Inter-cars safety communication system based on Android smartphone. In Proc. IEEE Conf. Open Systems, October 2014, pp.12-17.Dorairaj P, Mohammed A, Grbic N. Location-Aware services using Android mobile operating platform for safety, emergency and health applications. In Mobile Health, Adibi S (ed.), Springer, 2015, pp.283-298.Dorairaj P, Ramamoorthy S, Ramalingam A K. Emergency based remote collateral tracking system using Google’s Android mobile platform. In Advances in Computer Science Engineering & Applications, Wyld D C, Zizka J, Nagamalai D (eds.), Springer, 2012, pp.391-403.Zulkafi A Z, Basri S, Jung L T, Ahmad R. Android based car alert system. In Proc. the 3rd Int. Conf. Computer and Information Sciences, August 2016, pp.501-506.Tornell S M, Calafate C T, Cano J C, Manzoni P, Fogue M, Martinez F J. Evaluating the feasibility of using smartphones for ITS safety applications. In Proc. the 77th IEEE Vehicular Technology Conf., June 2013.Tornell S M, Patra S, Calafate C T, Cano J C, Manzoni P. GRCBox: Extending smartphone connectivity in vehicular networks. International Journal of Distributed Sensor Networks, 2015, 2015: Article No. 5.Mirkovic J, Dietrich S, Dittrich D, Reiher P. Internet Denial of Service: Attack and Defense Mechanisms (Radia Perlman Computer Networking and Security). Prentice Hall PTR, 2004.Chen S, Xu J, Sezer E C, Gauriar P, Iyer R K. Non-control-data attacks are realistic threats. In Proc. the 14th Conf. USENIX Security Symp., July 31-August 5, 2005.Fung C K, Lee M C. A denial-of-service resistant public-key authentication and key establishment protocol. In Proc. the 21st IEEE Int. Performance Computing and Communications Conf., April 2002, pp.171-178.Abadi M, Budiu M, Erlingsson Ú, Ligatti J. Control-flow integrity. In Proc. the 12th ACM Conf. Computer and Communications Security, November 2005, pp.340-353

    UAV Mobility model for dynamic UAV-to-car communications in 3D environments

    Full text link
    [EN] In scenarios where there is a lack of reliable infrastructures to support car-to-car communications, Unmanned Aerial Vehicles (UAVs) can be deployed as mobile infrastructures. However, the UAVs should be deployed at adequate location and heights to maintain the coverage throughout time as the irregularities of the terrain may have a significant impact on the radio signals sent to distribute information. So, flight altitude and location should be constantly adjusted in order to avoid hilly or mountainous terrains that might hinder the Line-of-Sight (LOS). In this paper, we propose a three-dimensional mobility model to define the movement of the UAV so as to maintain good coverage levels in terms of communications with moving ground vehicles by taking into account the elevation information of the Earth's surface and the signal power towards the different vehicles. The results showed that our proposed model is able to extend the times with connectivity between the UAV and the cars compared to a simpler two-dimensional model, which never considers the altitude, and a static model, which maintains the same UAV position from the beginning to the end of the experiment.This work was partially supported by the "Ministerio de Ciencia, Innovacion y Universidades, Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad, Proyectos I+D+I 2018", Spain, under Grant RTI2018-096384-B-I00, grant BES-2015-075988, Ayudas para contratos predoctorales 2015 and the Erasmus+ practicas grant.Hadiwardoyo, SA.; Dricot, J.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J.; Hernández-Orallo, E.; Manzoni, P. (2020). UAV Mobility model for dynamic UAV-to-car communications in 3D environments. Ad Hoc Networks. 107:1-9. https://doi.org/10.1016/j.adhoc.2020.102193S19107Gupta, L., Jain, R., & Vaszkun, G. (2016). Survey of Important Issues in UAV Communication Networks. IEEE Communications Surveys & Tutorials, 18(2), 1123-1152. doi:10.1109/comst.2015.2495297Zhou, Y., Cheng, N., Lu, N., & Shen, X. S. (2015). Multi-UAV-Aided Networks: Aerial-Ground Cooperative Vehicular Networking Architecture. IEEE Vehicular Technology Magazine, 10(4), 36-44. doi:10.1109/mvt.2015.2481560Hadiwardoyo, S. A., Hernández-Orallo, E., Calafate, C. T., Cano, J. C., & Manzoni, P. (2018). Experimental characterization of UAV-to-car communications. Computer Networks, 136, 105-118. doi:10.1016/j.comnet.2018.03.002Oubbati, O. S., Lakas, A., Zhou, F., Güneş, M., Lagraa, N., & Yagoubi, M. B. (2017). Intelligent UAV-assisted routing protocol for urban VANETs. Computer Communications, 107, 93-111. doi:10.1016/j.comcom.2017.04.001Bujari, A., Calafate, C. T., Cano, J.-C., Manzoni, P., Palazzi, C. E., & Ronzani, D. (2017). Flying ad-hoc network application scenarios and mobility models. International Journal of Distributed Sensor Networks, 13(10), 155014771773819. doi:10.1177/1550147717738192Hadiwardoyo, S. A., Calafate, C. T., Cano, J.-C., Ji, Y., Hernandez-Orallo, E., & Manzoni, P. (2019). 3D Simulation Modeling of UAV-to-Car Communications. IEEE Access, 7, 8808-8823. doi:10.1109/access.2018.2889604Jia, S., & Zhang, L. (2017). Modelling unmanned aerial vehicles base station in ground‐to‐air cooperative networks. IET Communications, 11(8), 1187-1194. doi:10.1049/iet-com.2016.0808Hadiwardoyo, S. A., Calafate, C. T., Cano, J.-C., Krinkin, K., Klionskiy, D., Hernández-Orallo, E., & Manzoni, P. (2020). Three Dimensional UAV Positioning for Dynamic UAV-to-Car Communications. Sensors, 20(2), 356. doi:10.3390/s20020356Camp, T., Boleng, J., & Davies, V. (2002). A survey of mobility models for ad hoc network research. Wireless Communications and Mobile Computing, 2(5), 483-502. doi:10.1002/wcm.72Bettstetter, C., Hartenstein, H., & Pérez-Costa, X. (2004). Stochastic Properties of the Random Waypoint Mobility Model. Wireless Networks, 10(5), 555-567. doi:10.1023/b:wine.0000036458.88990.e5Wang, W., Guan, X., Wang, B., & Wang, Y. (2010). A novel mobility model based on semi-random circular movement in mobile ad hoc networks. Information Sciences, 180(3), 399-413. doi:10.1016/j.ins.2009.10.001Xie, J., Wan, Y., Wang, B., Fu, S., Lu, K., & Kim, J. H. (2018). A Comprehensive 3-Dimensional Random Mobility Modeling Framework for Airborne Networks. IEEE Access, 6, 22849-22862. doi:10.1109/access.2018.2819600Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., … Alsdorf, D. (2007). The Shuttle Radar Topography Mission. Reviews of Geophysics, 45(2). doi:10.1029/2005rg000183Bullington, K. (1947). Radio Propagation at Frequencies above 30 Megacycles. Proceedings of the IRE, 35(10), 1122-1136. doi:10.1109/jrproc.1947.232600Whitteker, J. H. (1990). Fresnel-Kirchhoff theory applied to terrain diffraction problems. Radio Science, 25(5), 837-851. doi:10.1029/rs025i005p00837Sommer, C., German, R., & Dressler, F. (2011). Bidirectionally Coupled Network and Road Traffic Simulation for Improved IVC Analysis. IEEE Transactions on Mobile Computing, 10(1), 3-15. doi:10.1109/tmc.2010.133Haklay, M., & Weber, P. (2008). OpenStreetMap: User-Generated Street Maps. IEEE Pervasive Computing, 7(4), 12-18. doi:10.1109/mprv.2008.8
    corecore